Invité
|
Posté le: 08 12 2011 12:07 Sujet du message: |
|
|
oneted a écrit: | moi j ai pas tout a fait compris pareil pour le fp...
"La commission soutient par ailleurs les nouvelles mesures visant à empêcher d'augmenter la vitesse en intervenant sur le moteur, tout en veillant à ce que ces mesures n'empêchent pas les motocyclistes de modifier d'autres aspects."
concernant l'ABS, vu que la majorité roulent sur route, sa me parait pas complètement dénué de bon sens, et pourquoi pas l'adapter au 50cc des minots
grever le plaisir de conduire au profit de la sécurité ne me pose aucun probleme, d'autant que pour l'abs, si sa peut faire chier les pistards, sur route faut commencer a emmener le brélon a bon rythme pour que sa devienne chiant (je pense). |
Tu ne pourrais pas modifier le moteur mais les autres aspects oui tels que l'esthétique. Un peu comme entre 93 et 97 où pour passer en fp fallait changer CDI, ACT etc et ça coûtait très cher.
Rouler avec ABS ou pas, on devrait avoir le choix. Ce qui est une dérive est le fait d'imposer et de plus, de rendre la maintenance beaucoup plus coûteuse. Demande combien coûte une centrale ABS et un capteur...
Je pense que l'ABS peut éviter un accident, mais le rendre au moins déconnectable serait judicieux. Parce que grever le plaisir de conduite, certains ne s'en moquent pas.Surtout il faudrait regarder de près le coût de la maintenance.
Les motos sont devenues plus sures aussi par leur facilité de conduite. L'ABS est un plus mais DECONNECTABLE. Et pour ma part, je pense que toutes les assistances à la conduite devraient être déconnectables. Quant au bridage... C'est la fin des 1000 et plus. A moins qu'on fasse des 600 suralimentées.
Enfin le pot catalytique émet des émissions douteuses mais c'est vrai, éradique le CO2. C'est surtout du business. Car c'est extrêmement cher.
Impacts positifs : Les pots catalysés ont permis de diminuer les émissions de 3 polluants : monoxyde de carbone (CO, toxique), oxydes d'azote (précurseurs de l'ozone) ainsi que des hydrocarbures imbrûlés (polluants et parfois mutagènes et cancérogènes), et indirectement du plomb (en favorisant les carburants sans plomb)
Limites du système : La catalyse ne résout pas tous les problèmes de pollution des gaz d'échappement, et elle en crée de nouveaux.
Le catalyseur n'est efficace qu'au-dessus d'environ 400 °C, température qui n'est généralement atteinte qu'après 10 à 15 kilomètres de conduite. Or, c'est au démarrage que les émissions de gaz toxiques sont les plus importantes.
Des polluants majeurs ne sont pas traités : la température de fonctionnement du catalyseur à trois voies provoque une réaction parasite qui crée du N2O, un puissant gaz à effet de serre, et il ne traite pas le CO2. Ce sont donc deux gaz à effet de serre qui sont produits et/ou non traités.
Remplacement du plomb : le plomb utilisé pour relever l'indice d'octane a été remplacé car il détruit les pots catalytiques et pour ses inconvénients graves (le plomb est non dégradable, et facteur de saturnisme). Mais le benzène et certains métaux lourds (ex : Manganèse en l'additif sur les véhicules qui ne supportent pas les carburants sans plomb) qui ont remplacé le plomb comme « anti-détonants » (une grande partie du benzène a été aujourd'hui remplacée par des alcools qui ont des propriétés anti-détonantes similaires) posent d'autres problèmes écologiques et sanitaires (le benzène est cancérogène), et ils sont de plus en plus présents dans l'air et l'environnement urbain et aux abords des routes à fort trafic.
Nouvelle pollution par les métaux précieux : Selon des études citées par la revue scientifique américaine Environmental Science and Technology – paradoxalement - les métaux lourds des pots catalytiques polluent déjà l'environnement, localement et jusque dans les neiges et les glaces polaires. (100 fois plus de retombées dans les zones polaires avec très forte augmentation en deux décennies). Les pots sont soumis à un flux corrosif et encrassant, à de fréquentes variations de température et de pression, à des chocs thermiques et aux vibrations, ce qui explique qu'une part des métaux lourds utilisés soient peu à peu arrachés de leur support et expulsés avec les gaz d'échappement.
Les pots catalytiques pour automobiles sont apparus vers 1975 aux États-Unis et fin des années 1980 en Europe de l’Ouest. Ils émettent des quantités croissantes de platine, rhodium et de palladium, par exemple détectées dans l'herbe des prairies bordant des routes, dans l'urine des habitants de Rome, ce qui laisse penser que nous y sommes exposés. Ces métaux autrefois rares dans notre environnement sont maintenant communément trouvés dans la poussière des routes des pays riches, à des taux parfois plus élevés que dans le minerai de platine8 (source : Pr Claude Boutron).
Pollution locale et globale :Contrairement aux principaux gaz d'échappement, les métaux lourds ne sont ni biodégradables ni dégradables. Ils ne peuvent qu'être stockés éventuellement provisoirement dans les sols, sédiments ou végétaux. Ce phénomène est récent et peu étudié : on ignore encore s'ils peuvent être fortement bioaccumulés dans les chaînes alimentaires. Une étude9 a dosé le platine, le rhodium et le palladium de carottes de glace et de neige prélevées au centre du Groenland ; Les taux de platine, rhodium et palladium se sont montrés jusqu'à 100 fois plus élevés dans la neige tombée au milieu des années 1990 que dans la glace datant d'il y a 7000 à 8000 ans, avec une brutale augmentation ces dernières années qui laisse penser que la catalyse serait en cause.
Des analyses sont en cours pour voir si l'Antarctique et l'Hémisphère Sud sont également touchés, bien que beaucoup moins industrialisés et peuplés.
L'origine de cette pollution semble avérée et incontestable, car le rapport d'abondance du platine et du rhodium mesuré dans la neige récente du Groenland est le même que celui mesuré directement à la sortie de pots d'échappement catalytiques. Ces métaux circulent donc déjà de manière aéroportée jusqu'en Arctique.
Selon une étude allemande10 publiée en 2001, le platine était jusqu'en 1998 plus présent que le rhodium, et sa présence augmente plus vite en Allemagne que celle du rhodium dans l'air ambiant et dans les poussières, et ce depuis l'introduction de pots catalytiques automobiles en 1988. Les analyses montrent une forte et régulière augmentation des teneurs ambiantes de ces métaux sur 10 ans (de 1988 à 1998). Plus précisément, les teneurs de l’air en ces matériaux étaient 46 fois plus élevées en 1998 qu’en 1988 pour le platine et 27 fois pour le rhodium, et on peut supposer qu’ils ont encore augmenté depuis étant donné la multiplication du nombre des pots catalytiques. Les taux considérés par métaux restaient en 1998 pour le platine (147 pg/m³ en moyenne, avec un maximum de 246 pg/m³ en 1998) au-dessous de la valeur guide de 15000 pg/m³ (concentration à partir de laquelle un risque appréciable pour la santé est reconnu, selon les données épidémiologiques disponibles (étude d’employés d’usines produisant ou utilisant des catalyseurs), mais ces études sont rares, elles ne concernaient pas les très petites particules et n’ont pas étudié si des effets synergiques étaient possibles entre catalyseurs, ou avec d’autres polluants, ou en termes d’impacts secondaires via la photochimie par exemple.
Pollution par l'osmium (faiblement présent comme catalyseur ou comme impureté dans les platinoïdes catalytiques ; à raison de 600 à 700 ppt pour les pots catalytiques anciens et beaucoup moins probablement pour les derniers modèles) pour les nouveaux modèles). Ce métal rare est volatil sous sa forme oxydée, qui est par ailleurs très toxique.
- Un faible pourcentage de cet osmium est perdu sous forme particulaire (expulsé avec les gaz d'échappement, déposé sur les routes et éventuellement lessivé par les pluies).
- Une autre partie, probablement beaucoup plus importante est perdue sous forme gazeuse. En laboratoire, la volatilité de l'oxyde d'osmium se montre élevée ; assez pour que près de 95% de l'osmium des pots catalytiques soit vaporisé et dispersé dans l'air, faisant des automobiles contemporaines (des années 2000-2009) la première source majeure et planétaire de pollution en osmium non radiogénique. Ce sont de 3 pico-grammes d'osmium/m2 à 126 pico-grammes/m2 (qui peuvent être émis dans de grandes agglomérations telles que New-York City) qui pourraient ainsi être déposés annuellement, surtout aux abords des réseaux routiers les plus circulants. Ces dépôts sont importants si on les compare par exemple aux 1 pg d'osmium/m2/an déposé via les poussières d'origine naturelle (érosion du sol, volcanisme, météorites..)11. Cet osmium n'est pas biodégradable, et s'ajoute à celui provenant des rares autres sources anthropiques déjà inventoriées et on en trouve déjà des quantités significatives dans les eaux et sédiments. On ignore son temps moyen de vie dans l'air ou l'eau, mais comme c'est une molécule très réactive (hyperoxydant), on suppose que sa forme vapeur (la plus toxique) a une relativement faible durée de vie12. On ne connait pas son cycle dans les compartiments vivants des écosystèmes (chaine alimentaire), mais on mesure déjà une accumulation dans les sédiments. Par exemple, les métaux sédimentés dans le Saanich Inlet, un fjord anoxique de la Cote Ouest du Canada ont été étudiés pour fabriquer la courbe en 187Os/I88Os caractérisant certains évènement géotectoniques et climatiques des paléo-océans (du Cénozoïque, et pour partie du Mézosoïque). Les quantités d'osmium y sont faibles, probablement en raison de la faiblesse de l'enrichissement du fjord en osmium marin, mais on s'est aperçu que les couches récentes de sédiments contiennent une faible quantité d'Osmium (55-60 ppt dont la composition isotopique ne reflète pas celle de l'océan actuel mais évoque un apport local en osmium non-radiogénique (détritique et/ou dissous). La comparaison qualitative (isotopique) et quantitative de cet osmium avec celui qui est conservé dans les couches stratigraphiques plus anciennes et préanthropiques laisse penser que cet osmium non-radiogénique est d'origine humaine, et plus particulièrement automobile, car on trouve aussi dans les sédiments superficiels de ce fjord du plomb tétra-éthyl issu des carburants automobiles (des années 1930 à 1980). La signature isotopique de ce plomb démontre que ce fjord est fortement affecté pas les retombées de plomb atmosphérique originaire du parc automobile nord-Américain)1.
-L'osmium des catalyseurs passe effectivement en phase vapeur aux températures de fonctionnement des pots d'échappement : Une expérience a consisté à chauffer l'élément catalytique d'un pot d'échappement dans un four durant 330 h (délai correspondant à environ un an d'utilisation à raison d'une heure/jour, à 400 ° C, soit la température la plus basse pour que le catalyseur fonctionne). À cette température, 75% à 95% de l'osmium quitte le substrat catalytique pour passer dans l'air sous forme gazeuse (OSO4). Or la température dans un pot catalytique dépasse souvent 500 °C et peut atteindre 1100 ° C13. L'auteur suppose donc qu'en usage normal, près de 100 % de l'osmium présent dans le catalyseur pourrait être perdu dans l'air.
- Une étude isotopique récente a montré que cette contamination était déjà largement planétaire pour les neiges et eaux de pluies, mais aussi des eaux marines superficielles par de l'osmium anthropogénique14
Risques pour la santé ?[modifier]
Sans nier les avantages des pots catalytiques, on manque de données toxicologiques et écotoxicologiques quant aux impacts des métaux perdus par ces pots dans l'environnement, et notamment quant aux effets sanitaires et écologiques des dérivés (oxydes en particulier) et métabolites de ces métaux.
Les métaux du groupe du Platine, lorsqu'ils sont présents dans les particules en suspension, ne sont en effet pas chimiquement neutres (ce pourquoi ils font de bons catalyseurs), et notamment à l'état de particules ultrafines (moins de 1 µm) ou de nanoparticules lorsque leur effet catalytique est dopé par une surface de contact très augmentée à poids égal de matière. Certains de ces métaux sont pour ces raisons utilisés comme médicament anticancéreux (par exemple pour une forme oxydée du platine), mais non sans effets secondaires, puisque c'est la molécule qui cause la perte des cheveux dans certaines chimiothérapie et qu'elle est potentiellement cancérigène à plus forte dose.
Un échantillon d’air collecté en Allemagne à 150 m d’une route a fait l’objet d’une étude15 visant à déterminer précisément les tailles et la nature des particules présentes dans l'air : près de 75% des particules de platine et 95% de celle de Rhodium de cet échantillon étaient associées à des particules de plus de 2 µm de diamètre (comprises entre 4,7 et 5,8 µm pour la plupart). Le poids moléculaire de ces particules laisse supposer qu’elles sont facilement mises en suspension, mais qu'elles sédimentent assez rapidement dans l'air et sont moins susceptibles de réenvol une fois fixées par un sol végétalisé. Mais les 25% restants de Platine et 5% des particules de Rhodium étaient présent sous forme de particules fines ou ultrafines de moins de 2 µm qui sédimenteront plus difficilement. Environ 10% des particules en suspension de Platine et près de 38% des particules de Rh se sont montrées solubles dans un acide fortement dilué (0,1 molaire), ce qui laisse penser qu'elles pourraient facilement franchir les muqueuses pulmonaires et les barrières intestinales en cas d'inhalation et/ou d'ingestion.
Par ailleurs, selon cette étude un quart des particules composées de métaux du groupe du platine sont émises avec une taille si fine qu’elles sont susceptibles d’avoir un comportement de particules en suspension plutôt que de rapidement retomber au sol. Or ce sont des métaux à fort pouvoir catalytique qui pourraient contribuer à la pollution photochimique et dont les impacts sur les organismes vivant après inhalation ou bio-intégration par des plantes, champignons, ou bactéries sont mal connus, notamment sous forme de microparticules. Les matériels utilisés pour cette étude ne permettaient pas de mesurer le pourcentage de nanoparticules éventuellement présent dans cet échantillon. Cette étude confirme néanmoins qu’un quart au moins de ces métaux lorsqu’ils sont perdus par les pots d’échappement peuvent facilement être emportés et se redéposer loin de leurs sources d’émissions, emportés par les vents et courants aériens faibles (ex : ascendances thermiques fréquentes au-dessus des routes goudronnées de couleur noire). Ces produits n'étant pas biodégradables, ils sont susceptibles d'être bioaccumulés et/ou de s'accumuler dans les sols proches des routes, et dans les parkings souterrains et près de leurs bouches d'aération.
Le fait que les pots catalytiques perdent de l'osmium sous forme vapeur (forme oxydée la plus toxique de l'osmium) est également préoccupant)1. Le kérogène est une source naturellemen riche en osmium radiogène16peut laisser penser que l'osmium peut être bioaccumulé mais son cycle "naturel" est encore mal étudié. |
|